Роль постоянной Планка. Идея квантования вводит дискретность, а дискретность требует определения меры. Роль такой меры играет постоянная Планка. Можно сказать, что эта постоянная как бы определяет «границу» между микроявлениями и макроявлениями. Используя постоянную Планка, а также массу и заряд электрона, можно образовать следующую простейшую композицию, обладающую размерностью длины:

r1 = h2 / me2 = 0,53 . 10-8 см

(заметим, что r1 есть радиус первой орбиты в теории Бора). В соответствии с этим величина порядка 10-8 см может рассматриваться как пространственная «граница» микроявлений. Именно таковы линейные размеры атомов.

Если бы при прочих равных условиях постоянная h была бы, например, в 100 раз больше, то «граница» микроявлений оказалась бы порядка 10-4 см. Это означало бы, что микроявления были бы гораздо ближе к нам, к нашим масштабам, атомы стали заметно крупнее. Иными словами, материя оказалась бы более «крупнозернистой» и следовало бы при более крупных масштабах пересматривать классические представления.

Как указывалось ранее, проекции момента микрообъекта отличаются друг от друга на величины, кратные h. Следовательно, здесь постоянная Планка является попросту шагом квантования. Если орбитальный момент много больше h, то квантованием можно пренебречь; в этом случае переходим к классическому моменту импульса. В отличие от орбитального спиновой момент не может быть достаточно большим. Ясно, что здесь квантованием пренебречь принципиально невозможно; именно поэтому спиновой момент и не имеет классического аналога.

Постоянная Планка органически связана не только с идеей квантования, но также и с идеей дуализма. Из формул  E = hω,   p = 2πh / λ видно, что эта постоянная играет весьма важную роль – именно она осуществляет связь между корпускулярными и волновыми характеристиками микрообъекта. Указанное обстоятельство особенно хорошо видно, если переписать эти формулы в виде, позволяющем учесть векторную природу импульса:

E = hω,   p = hk.

Здесь k – волновой вектор; его направление совпадает с направлением распространения волны, а величина выражается через длину волны следующим образом: k = 2π / λ. В левые части равенств входят корпускулярные, а в правые – волновые характеристики микрообъекта.

Итак, постоянная Планка играет в квантовой механике две основные роли – служит мерой дискретности и связывает воедино корпускулярный и волновой аспекты движения материи. Тот факт, что обе роли играет одна и та же постоянная, косвенно указывает на внутреннее единство двух основополагающих идей квантовой механики. Наличие в том или ином выражении постоянной Планка является характерным признаком «квантомеханической природы» этого выражения.

Join Us On Telegram @rubyskynews

Apply any time of year for Internships/ Scholarships